o

Security in C++
Hardening techniques from
the trenches

| ouis Dionne and Konstantin Varlamov
15-11-2024

How Important Is Security?

- Financial threat: WannaCry (ransomware) affected over 300k
computers in 150 countries, cost over $4B

- Infrastructure threat: Stuxnet and Triton targeted power stations

- Physical threat: Spyware like Pegasus targeted journalists and high-
profile activists

Memory Unsafety Accounts For ~70%
Of High Severity Security Issues *

C++ Is Memory Unsafe

Who Am | Quoting?

Experts have identified a few programming languages that both lack traits
associated with memory safety and also have high proliferation across
critical systems, such as C and C++.

[...]

The highest leverage method to reduce memory safety vulnerabilities is to
secure one of the building blocks of cyberspace: the programming language.*

* https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf

https://www.whitehouse.gov/wp-content/uploads/2024/02/Final-ONCD-Technical-Report.pdf

There are memory safe alternatives to
C++

But migrating Is not always an option

C++ Can Do Better

C++ Must Do Better

Partly an Attitude Problem

C++ has generally adopted an expert-friendly attitude:
- |f the user makes a mistake, it's their fault

. Performance at all costs

The Mindset Is Changing

- More general awareness about the problem
. Creation of SG23 (Safety and Security Study Group)
- Most of WG21 understands the urgency

- However, still few concrete solutions

We're Engineers, Let's Solve Problems

Agenda

Overview of Memory Safety
Library Undefined Behavior
Standard Library Hardening
Typed Memory Operations

Conclusions

Types of Memory Safety

- Spatial memory safety

- Temporal memory safety
. Type safety

- Guaranteed initialization

- Thread safety

Spatial memory safety

- Each memory allocation has a given size (or bounds)

. Accessing memory out of bounds is called an out-of-bounds (OOB)
access

Example

Inspired from https://snyk.io/blog/buffer-overflow-attacks-in-c/

Input

password

16

Example

Inspired from https://snyk.io/blog/buffer-overflow-attacks-in-c/

Input

password

r

e

d

16

Example

Inspired from https://snyk.io/blog/buffer-overflow-attacks-in-c/

Input

password

r

e

d

16

Example

Inspired from https://snyk.io/blog/buffer-overflow-attacks-in-c/

Input

password

)

e

C

u r

16

Example

Inspired from https://snyk.io/blog/buffer-overflow-attacks-in-c/

Input

password

)

e

C

u r

16

Temporal Memory Safety

- All memory accesses to an object should occur during the lifetime of
the object's allocation

. Access to the object outside of this window is called a use-after-free

Type Safety

- A memory allocation Is used to represent an object of a particular type

- Interpreting it as an object of a different type is called a type confusion

Most Temporal Memory Issues Involve “"Type Confusion”

struct timespec { /\ struct iovec 1
time t tv_sec; charx 1ov_base;
long tv_nsec; size t iov_len;

}; v };

19

Tying this back to ISO C++

Most safety issues fall under Undefined Behavior in the Standard

Agenda

Overview of Memory Safety
Library Undefined Behavior
Standard Library Hardening
Typed Memory Operations

Conclusions

Undefined Behavior

In the Standard, all memory safety bugs fall under undefined behavior.

Undefined Behavior

In the Standard, all memory safety bugs fall under undefined behavior.

3.63 undefined behavior [defns.undefined]
behavior for which this document imposes no requirements

[Note 1: Undefined behavior may be expected when this document omits any explicit definition of behavior or when a
program uses an incorrect construct or invalid data. Permissible undefined behavior ranges from ignoring the situation
completely with unpredictable results, to behaving during translation or program execution in a documented manner
characteristic of the environment (with or without the issuance of a diagnostic message ([defns.diagnostic])), to termi-
nating a translation or execution (with the issuance of a diagnostic message). Many incorrect program constructs do
not engender undefined behavior; they are required to be diagnosed. Evaluation of a constant expression ([expr.const])
never exhibits behavior explicitly specified as undefined in [intro] through [cpp]. — end note]

22

Undefined behavior != undefined behavior

Undefined behavior != undefined behavior

-Language-level UB

Undefined behavior != undefined behavior

-Language-level UB

The compiler is free to do anything

Undefined behavior != undefined behavior

-Language-level UB

The compiler is free to do anything

-Library-level UB

Undefined behavior != undefined behavior

-Language-level UB

The compiler is free to do anything

-Library-level UB
The standard library is free to do anything

Library Undefined Behavior

Library Undefined Behavior

- Usually explicitly stated

Library Undefined Behavior

- Usually explicitly stated

23.7.2.2.6 Element access

constexpr reference operator[](size_type idx) const;
Preconditions: idx < size() is true.

Returns: * (data() + 1idx).

Throws:. Nothing.

24

Library Undefined Behavior

- Usually explicitly stated
-Bounded

23.7.2.2.6 Element access

constexpr reference operator[](size_type idx) const;
Preconditions: idx < size() is true.

Returns: * (data() + 1idx).

Throws:. Nothing.

24

Library Undefined Behavior

- Usually explicitly stated
-Bounded

- Always due to user input

23.7.2.2.6 Element access

constexpr reference operator[](size_type idx) const;
Preconditions: idx < size() is true.

Returns: * (data() + 1idx).

Throws:. Nothing.

24

Library Undefined Behavior

- Usually explicitly stated
-Bounded
- Always due to user input

-Easier to check

23.7.2.2.6 Element access

constexpr reference operator[](size_type idx) const;
Preconditions: idx < size() is true.

Returns: * (data() + 1idx).

Throws:. Nothing.

24

Library Undefined Behavior

- Usually explicitly stated
-Bounded
- Always due to user input

-Easier to check

(compared to language)

23.7.2.2.6 Element access

constexpr reference operator[](size_type idx) const;
Preconditions: idx < size() is true.

Returns: * (data() + 1idx).

Throws:. Nothing.

24

Two axes for classifying undefined behavior

Two axes for classifying undefined behavior

- Severity: from benign to security-critical

Two axes for classifying undefined behavior

- Severity: from benign to security-critical

- Difficulty of validating: from trivial to impossible

Two axes for classifying undefined behavior

- Severity: from benign to security-critical

- Difficulty of validating: from trivial to impossible

3 For all algorithms that take Compare, there is a version that uses operator< instead. That is, comp(*i,
*j) != false defaultsto *1 < *j != false. For algorithms other than those described in [alg.binary.-

search], comp shall induce a strict weak ordering on the values.

The term strict refers to the requirement of an irreflexive relation (!comp(x, x) for all x), and the term
weak to requirements that are not as strong as those for a total ordering, but stronger than those for a par-
tial ordering. If we define equiv(a, b) as !'comp(a, b) && !comp(b, a), then the requirements are
that comp and equiv both be transitive relations:

PAS)

Two axes for classifying undefined behavior

-Severity: from benign to security-critical

-Difficulty of validating: from trivial to impossible

Defining undefined behavior

UB means the implementation can do anything.
"Anything" doesn't have to be harmful or useless!

We can turn UB into useful implementation-defined behavior.

3.63 undefined behavior [defns.undefined]
behavior for which this document imposes no requirements

[Note 1. Undefined behavior may be expected when this document omits any explicit definition of behavior or when a
program uses an incorrect construct or invalid data. Permissible undefined behavior ranges from ignoring the situation
completely with unpredictable results, to behaving during translation or program execution in a documented manner
characteristic of the environment (with or without the issuance of a diagnostic message ([defns.diagnostic])), to termi-
nating a translation or execution (with the issuance of a diagnostic message). Many incorrect program constructs do
not engender undefined behavior; they are required to be diagnosed. Evaluation of a constant expression ([expr.const])
never exhibits behavior explicitly specified as undefined in [intro] through [cpp]. — end note]

Agenda

Overview of Memory Safety
Library Undefined Behavior
Standard Library Hardening
Typed Memory Operations

Conclusions

Standard Library Hardening

Standard Library Hardening

- Turn select UB into guaranteed traps

Standard Library Hardening

- Turn select UB into guaranteed traps

-Provide hardening modes with high-level semantics

Standard Library Hardening

- Turn select UB into guaranteed traps
- Provide hardening modes with high-level semantics

- Allow users to select hardening mode that's right for them

Standard Library Hardening

- Turn select UB into guaranteed traps
- Provide hardening modes with high-level semantics
- Allow users to select hardening mode that's right for them

- Allow vendors to select the default mode

Libc++ Hardening Modes

Libc++ Hardening Modes

-nhone — do not compromise any performance

Libc++ Hardening Modes

-nhone — do not compromise any performance

-fast — security-critical low-overhead checks only

Libc++ Hardening Modes

-nhone — do not compromise any performance
-fast — security-critical low-overhead checks only

.extensive — low-overhead checks

Libc++ Hardening Modes

-nhone — do not compromise any performance
-fast — security-critical low-overhead checks only
-extensive — low-overhead checks

-debug — all checks

Usage example

Usage example

Usage example

Usage example

Usage example

Usage example

Usage example

Usage example

Usage example

Usage example

32

Usage example

$ clang++ -std=c++23 -g main.cc && ./a.out 1
bar

32

Usage example

$ clang++ -std=c++23 -g main.cc && ./a.out 1
ololg

$ clang++ -std=c++23 -g main.cc && ./a.out -1

32

Usage example

$ clang++ -std=c++23 -g main.cc && ./a.out 1
bar

$ clang++ -std=c++23 -g main.cc && ./a.out -1

$ clang++ -std=c++23 -g main.cc \
-D_LIBCPP_HARDENING_MODE=_LIBCPP_HARDENING_MODE_FAST \
&& ./a.out -1
[1] 16295 trace trap ./a.out -1

Usage example: attaching a debugger

Usage example: attaching a debugger

$ 11ldb a.out
(11db) target create "a.out"
Current executable set to '/Users/varconst/demo/a.out’' (armo4).

33

Usage example: attaching a debugger

$ 11ldb a.out
(11db) target create "a.out"
Current executable set to '/Users/varconst/demo/a.out’' (armo4).

run -1
Process 16434 launched: '/Users/varconst/demo/a.out' (armo4)
Process 16434 stopped
* thread #1, queue = 'com.apple.main-thread', stop reason =

33

Usage example: attaching a debugger

$ 11db a.out
(11db) target create "a.out"
Current executable set to '/Users/varconst/demo/a.out’' (armo4).

(Lldb) run -1

Process 16434 launched: '/Users/varconst/demo/a.out’' (armo4)
Process 16434 stopped

* thread #1, queue = "com.apple.main-thread', stop reason =

frame #1: Ox0000000100000808 a.out std::__1::vector<std::__1::basic_str
ing<char, std::__1::char_traits<char>, std::__1::allocator<char>>, std::__1
::allocator<std::__1::basic_string<char, std::__1::char_traits<char>, std::
__1::allocator<char>>>>::operator[](thi1s=0x000000016fdfeb38 size=3, __n=184
46744073709551615) at vector:1393:3

1390 template <class _Tp, class _Allocator>

1391 constexpr inline typename vector<_Tp, _Allocator>::reference

1392 vector<_Tp, _Allocator>::operator[](size_type __n) noexcept {
-> 1393 _LIBCPP_ASSERT_VALID_ELEMENT_ACCESS(__n < size(),

1394 "vector[] index out of bounds");
1395 return this->__begin_[__n];
1396 }

Target 0: (a.out) stopped.
(11db) §

33

This Is not a "debugging” feature

You should ship this way!

There is no "one-size-fits-all" approach

There is no "one-size-fits-all" approach

- Different projects make different tradeoffs between safety and
performance

This can be true even for separate parts of the same project

36

There is no "one-size-fits-all" approach

- Different projects make different tradeoffs between safety and
performance

This can be true even for separate parts of the same project

-80/20 principle: "80"% of CVEs are caused by "20"% of types of
Issues (memory safety)

We can focus on the few most critical checks

There is no "one-size-fits-all" approach

- Different projects make different tradeoffs between safety and
performance

This can be true even for separate parts of the same project

-80/20 principle: "80"% of CVEs are caused by "20"% of types of
Issues (memory safety)

We can focus on the few most critical checks

-Wide adoption is critical, more important than perfect coverage

Better have 80% of programs catching 20% of issues than vice versa

Inside the Library

Inside the Library

-Checks are grouped into a few large categories

Inside the Library

-Checks are grouped into a few large categories

- Categories represent the nature of a check

Inside the Library

-Checks are grouped into a few large categories

- Categories represent the nature of a check

Valid element access

Inside the Library

-Checks are grouped into a few large categories

- Categories represent the nature of a check
Valid element access
Valid input range

Inside the Library

-Checks are grouped into a few large categories

- Categories represent the nature of a check
Valid element access
Valid input range

Non-null pointer

37

Inside the Library

-Checks are grouped into a few large categories

- Categories represent the nature of a check
Valid element access
Valid input range
Non-null pointer

And so on...

37

Inside the Library

-Checks are grouped into a few large categories

- Categories represent the nature of a check
Valid element access
Valid input range
Non-null pointer

And so on...

- Categories are internal — users only see modes

37

Valid Element Access Checks

Checks that an attempt to access a container element is valid
std: :optional is considered a container

Example:

template <class _Tp, class _Allocator>

reference vector< _Tp, _Allocator>::operator[](size type __n) noexcept {
_LIBCPP_ASSERT_VALID ELEMENT _ACCESS(_ n < size(), "vector[] index out of bounds"):
return this->__begin_[__nl;

}

38

Valid Element Access Checks

Checks that an attempt to access a container element is valid
std: :optional is considered a container

Example:

template <class _Tp, class _Allocator>

reference vector< _Tp, _Allocator>::operator[](size type __n) noexcept {
_LIBCPP_ASSERT _VALID ELEMENT _ACCESS(_ n < size(), "vector[] index out of bounds"):
return this->__begin_[__nl;

}

38

Non-overlapping Ranges Checks

Checks that two ranges given to an algorithm do not overlap

Example:

static 1nline constexpr char_typex
copy(char_typex __s1, const char_typekx __s2, size t __n) noexcept {
_LIBCPP_ASSERT_NON_OVERLAPPING_RANGES(

lstd::__is_pointer_in_range(__s1, __s1 + __n, __s2),
"char_traits::copy: source and destination ranges overlap");
std: :memmove(_ _s1, _s2, _element _count(__n));

return __si;

}

39

Non-overlapping Ranges Checks

Checks that two ranges given to an algorithm do not overlap

Example:

static 1nline constexpr char_typex
copy(char_typex __s1, const char_typekx __s2, size t __n) noexcept {
_LIBCPP_ASSERT_NON_OVERLAPPING_RANGES(

lstd::__is_pointer_in_range(__s1, __sl1 + __n, __s2),
"char_traits::copy: source and destination ranges overlap");
std: :memmove(__s1, _s2, _element _count(__n));

return __si;

39

High Level Modes are Collections of Categories

valid-input-range

valid-element-access

non-null-argument

non-overlapping-ranges

valid-deallocation

semantic-requirement

Internal

40

High Level Modes are Collections of Categories

None

valid-input-range

N¢

valid-element-access

p \\

non-null-argument

non-overlapping-ranges

valid-deallocation

semantic-requirement

\¢

Internal

40

High Level Modes are Collections of Categories

None Fast
valid-input-range X 4
valid-element-access X 4
non-null-argument
non-overlapping-ranges) ¢
valid-deallocation ¢ X
semantic-requirement X)~ ¢

Internal

40

High Level Modes are Collections of Categories

None Fast Extensive
valid-input-range X v v
valid-element-access X v v
non-null-argument X X v
non-overlapping-ranges X v
valid-deallocation X X v
semantic-requirement X X X
internal X X X

40

High Level Modes are Collections of Categories

None Fast Extensive Debug
valid-input-range X v v v
valid-element-access X v v v
non-null-argument X X v v
non-overlapping-ranges X X v v
valid-deallocation X X v v
semantic-requirement X X X v
internal X X) ¢ v

40

Selecting the Hardening Mode

-Define this macro: =D LIBCPP HARDENING MODE=<mode>

-Valid modes are:
- LIBCPP_HARDENING_MODE _NONE
- LIBCPP_HARDENING_MODE_ FAST
- LIBCPP_HARDENING_MODE_ EXTENSIVE
- LIBCPP_HARDENING_MODE DEBUG

-Hardening mode can be selected in each TU

Failed checks lead to termination

- The program reliably terminates in all modes

-Production and debug modes use different termination methods

Tradeoff between performance and user experience

-fast trap

.extensive ™ trap

-debug abort verbosely

ABI Considerations

Some useful checks require changing the ABI:

std::span<int> span(ptr, 3);

auto b = span.begin();

b += 999;

int value = xb; // can we trap here?

43

ABI Selection Is Orthogonal to Hardening

-ABl Is a property of the platform
- Platform vendors can select the desired ABI
It doesn’t make sense for users to control that

-Huge simplification: this prevents having to deal with ABIl-related
concerns as part of hardening

Example: Bounded Iterators

Library is configured with _LIBCPP_ABI BOUNDED_ITERATORS (by
the vendor)

template <class _Tp, size_ t _Extent>
class span {
public:

using element_type = _Tp;

using value_type = remove_cv_t< Tp>;

using size_type = size_ t;

W oo
#ifdef _LIBCPP_ABI_BOUNDED_ITERATORS

using iterator = __bounded_iter<pointer>;
#else

using iterator = pointer;
#endif

[/«
&

45

Example: Bounded Iterators

Library is configured with _LIBCPP_ABI BOUNDED_ITERATORS (by
the vendor)

template <class _Tp, size_ t _Extent>
class span {
public:

using element_type = _Tp;

using value_type = remove_cv_t< Tp>;

using size_type = size_ t;

W oo
#ifdef LIBCPP_ABI BOUNDED ITERATORS

using iterator = __bounded_iter<pointer>;
#else

using iterator = pointer;
#endif

[/«
&

45

Example: Bounded Iterators

lterators now have enough information for bounds checking:

std::span<int> span(ptr, 3);
auto b = span.begin();

b += 999;

int value = xb; // trap!

If hardening mode is none, there is still no trap

46

Sometimes, an ABI change is not hecessary

Inside a unique_ptr<T[1>, we can get the size from the array cookie

template <class _Tp, class _Dp>
class unique ptr<_Tpll, _Dp> {
// ...
template <class _Deleter,
class _Tp,
__enable_1f_t< 1s default _deleter< Deleter>::value &&
__has_array_cookie<_Tp>::value, int> = 0>
constexpr bool __in_bounds(_Tpx _ ptr, size_ t _ _index) const {
size t _ cookie = std::__get _array_cookie(__ptr);
return __i1ndex < __ cookile;

¥

47

Sometimes, an ABI change is not hecessary

Inside a unique_ptr<T[1>, we can get the size from the array cookie

template <class _Tp, class _Dp>
class unique ptr<_Tpll, _Dp> {
// ...
template <class _Deleter,
class _Tp,
__enable_1f_t< 1s default _deleter< Deleter>::value &&
__has_array_cookie<_Tp>::value, int> = 0>
constexpr bool in _bounds(Tpx ptr, size t index) const {
size t _ cookie = std::__get_array_cookie(__ptr);
return __index < __ cookile;

¥

47

Sometimes, an ABI change is not hecessary

Inside a unique_ptr<T[1>, we can get the size from the array cookie

template <class _Tp, class _Dp>
class unique ptr<_Tpll, _Dp> {
// ...
template <class _Deleter,
class _Tp,
__enable_1f_t< 1s default _deleter< Deleter>::value &&
__has_array_cookie<_Tp>::value, int> = 0>
constexpr bool in _bounds(Tpx ptr, size t index) const {
size t _ cookie = std::__get_array_cookie(__ptr);

return __index < __ cookile;
I3

47

Sometimes, an ABI change is not hecessary

Inside a unique_ptr<T[1>, we can get the size from the array cookie

template <class _Tp, class _Dp>
class unique ptr<_Tpll, _Dp> {
// ...
template <class _Deleter,
class _Tp,
__enable_1f_t< 1s default _deleter< Deleter>::value &&
__has_array_cookie<_Tp>::value, int> = 0>
constexpr bool in _bounds(Tpx ptr, size t index) const {
size t _ cookie = std::__get_array_cookie(__ptr);

return __index < __ cookile;
I3

5

47

Sometimes, an ABI change is not hecessary

Inside a unique_ptr<T[1>, we can get the size from the array cookie

template <class _Tp, class _Dp>
class unique ptr<_Tpll, _Dp> {
// ...
template <class _Deleter,
class _Tp,
__enable_1f_t< 1s default _deleter< Deleter>::value &&
__has_array_cookie<_Tp>::value, int> = 0>
constexpr bool in _bounds(Tpx ptr, size t index) const {
size t _ cookie = std::__get_array_cookie(__ptr);

BEEEE
| |

}
5

47

Sometimes, an ABI change is not hecessary

Inside a unique_ptr<T[1>, we can get the size from the array cookie

template <class _Tp, class _Dp>
class unique ptr<_Tpll, _Dp> {
// ...
template <class _Deleter,
class _Tp,
__enable_1f_t< 1s default _deleter< Deleter>::value &&
__has_array_cookie<_Tp>::value, int> = 0>
constexpr bool in _bounds(Tpx ptr, size t index) const {
size t _ cookie = std::__get_array_cookie(__ptr);

BEEEE

¥

47

Sometimes, an ABI change is not hecessary

Inside a unique_ptr<T[1>, we can get the size from the array cookie

template <class _Tp, class _Dp>
class unique ptr<_Tpll, _Dp> {
// ...
template <class _Deleter,
class _Tp,
__enable_1f_t< 1s default _deleter< Deleter>::value &&
__has_array_cookie<_Tp>::value, int> = 0>
constexpr bool in _bounds(Tpx ptr, size t index) const {
size t _ cookie = std::__get_array_cookie(__ptr);

| Jlerlez]lcalfea] es
| |

}
®

47

Sometimes, an ABI change is not hecessary

Inside a unique_ptr<T[1>, we can get the size from the array cookie

template <class _Tp, class _Dp>
class unique ptr<_Tpll, _Dp> {
// ...
template <class _Deleter,
class _Tp,
__enable_1f_t< 1s default _deleter< Deleter>::value &&
__has_array_cookie<_Tp>::value, int> = 0>
constexpr bool in _bounds(Tpx ptr, size t index) const {
size t _ cookie = std::__get_array_cookie(__ptr);

| |

}
®

47

Deployment Experience

Very positive experience so far:

-\We have several projects at Apple that use hardening, including
WebKit and Darwin kernel (XNU)

-Other adoption: Chrome and Google Andromeda*

- Already some known in-the-wild security issues that hardening would
have prevented or alleviated

* https://bughunters.google.com/blog/6368559657254912/llvm-s-rfc-c-buffer-hardening-at-google

Deployment Experience

However, adoption can require some work:

. Adoption Is easy for modern C++ code bases

- Harder for code bases that don't use the Standard Library

- Adoption of any new feature can introduce bugs if not careful

- Non-zero performance cost

Standardization Path

P3471 "Standard library hardening"

- Mark some existing library preconditions as hardened

- Provide a single hardened mode that checks hardened preconditions

https://wg21.link/P347/1

P3471 "Standard library hardening"

- Mark some existing library preconditions as hardened

- Provide a single hardened mode that checks hardened preconditions

(24.7.2.2.0) Element access 24.7.2.2.6 [span.elem]

constexpr reference operator[](size type 1idx) const;

L Hardened Preconditions: idx < size() iS true.

https://wg21.link/P347/1

51

Agenda

Overview of Memory Safety
Library Undefined Behavior
Standard Library Hardening
Typed Memory Operations

Conclusions

A Clever Observation

Most temporal memory safety exploits require some type confusion

If memory Is never reused for a different type, confusions are impossible
Isolate allocations by type!

This was utilized in the Darwin Kernel a few years ago *

* https://security.apple.com/blog/towards-the-next-generation-of-xnu-memory-safety

53

A Naive Typed Memory Allocator

A Performance [Security Tradeoff

e

etc...

The Most Important Property

Data must not alias pointers

How Effective Is Type Isolation?

In the Darwin Kernel, data suggests that the vast majority of dynamic
allocation lifetime bugs are not exploitable anymore

Type Isolation For General C++

struct Foo {

[/ ...
b

std::unique_ptr<Foo> f() {
return new Foo{args...}; // GOAL: should come from the Foo pool

¥

58

The Usual operator new Rewriting

User writes

std::unique_ptr<Foo> f() {
return new Foo{args...};

¥

Compiler rewrites

std::unique_ptr<Foo> f() {
Foox __alloc = operator new(sizeof(Foo));

new (__alloc) Foo{args...};
return __alloc;

}

59

The Problem

There i1s no type information

vO1ldx
vO1ldx
vOo1ldx
vO1ldx

operator
operator
operator
operator

new(std:
new(std:
new(std:
new(std::

1size t);
1size_t, const std::nothrow_t&) noexcept;
:size_t, std::align_val_t);

size t, std::align_val_t, const std::nothrow_t&) noexcept;

60

Thankfully, We Can Modify the Standard Library!

Let's add type information

enum class __ _type_descriptor_t : unsigned long long;

voidx operator new(std::size t, std::_ type_descriptor_t);
voidx operator new(std::size t, const std::nothrow_t&, std::_ type descriptor_t) noexcept;

61

And the Compiler Too!

User writes

std::unique_ptr<Foo> f() {
return new Foo{args...};

¥

Compiler rewrites

std::unique_ptr<Foo> f() {
Foox __ alloc = operator new(sizeof(Foo));

new (__alloc) Foo{args...};
return __alloc;

}

62

And the Compiler Too!

User writes

std::unique_ptr<Foo> f() {
return new Foo{args...};

¥

Compiler rewrites

std::unique_ptr<Foo> f() {

¥

Foox _ alloc = operator new(sizeof(Foo),

__builtin_type _descriptor(Foo));
new (__alloc) Foo{args...};
return __alloc;

62

Then We Forward Type Information to the System Allocator

voidx operator new(std::size t size, std::_ type _descriptor_t desc) A
if (size == 0)
size = 1;
volidx p;
while ((p = malloc_type malloc(size, static_cast<malloc_type_id_t>(desc))) == nullptr) {
[/ ..
I3

if (p == nullptr)
throw std::bad alloc();
return p;

¥

63

Deployment Experience

. Typed operator new adopted in Darwin user space system libraries
.- Extremely effective

. Essentially no adoption cost

Deployment Experience

- Not a silver bullet (not all allocations are funnelled through new)

. Effectiveness relies on QOI of the system allocator, which is a
performance tradeoff

Standardization Path

P2719: Type-aware allocation and deallocation functions

Before After

. _ // user writes:
// user writes: new (args...) T(...)

new (args...) T(...)

// compiler checks (in order):

// compiler checks (in order): . . .
. T::0operator new(type_ identity<T>+1j, sizeof(T), args...

T::operator new(sizeof(T), args...) T::oBerator newgs{geaf(T), a¥gs.f?) (T) J)

- SEPRTEEDT WREIZERT(T, ArEBaco) :operator new(type_identity<T>{}, sizeof(T), args...)

toperator new(sizeof(T), args...)

https://wg21.link/P2719

67

Users Could Now Write

struct Druid : Character { }:
struct Paladin : Character { }:
struct Sorceress : Character { };

template <std::derived_from<Character> T>
voidx operator new(std::type_identity<T>, std::size t size) A
// ... some special allocation scheme for these types ...

}

68

A Conforming Extension Under the As-If Rule

template <class _Tp>
__attribute_ ((__overload_priority_ (-1)))

void* operator new(std::type_identity< Tp>, std::size t _ size) {
std::__type_descriptor_t _ _descriptor = __builtin_type_descriptor(_Tp);
// ... typed operator new implementation ...

}

69

Conclusions

- Standard Library hardening tackles (mostly) spatial memory safety
- May require adoption to be effective
. Great for bug finding and production "hardening”
- We would like ISO C++ to make this a portable guarantee

. Go try 1t out!

Conclusions

- TMO makes temporal memory issues harder to exploit
- Adoption is almost 100% non-intrusive
- Does not fix any actual bugs, but makes them difficult to exploit

- We propose a standardization path with other benefits

Conclusions

- There's a huge amount of existing C++ code
- A lot of It Is unsafe by everyone's standard
- We need to do something about that

- Ease of adoption is a necessity

Conclusions

- Better safety and security is achievable in C++
- We must look for simple and high impact changes, not perfection
- We encourage more WG21 work on immediate solutions

- Pragmatically consider the greater good, not only C++'s interests

Thank You!

TM and © 2024 Apple Inc. All rights reserved.

75

